OFFPRINT

Lévy sections vs. partial sums of heteroscedastic time series

EPL, 96 (2011) 68004

Please visit the new website
www.epljournal.org
Lévy sections vs. partial sums of heteroscedastic time series

C. M. Nascimento(a), E. L. S. Helena1, F. S. Passos2,5, I. Gleria2, A. Figueiredo3 and G. M. Viswanathan2,4

1 Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe 49.100-000, São Cristóvão-SE, Brasil
2 Instituto de Física, Universidade Federal de Alagoas - 57.072-970, Maceió-AL, Brasil
3 Instituto de Física, Universidade de Brasília - 70.919-970, Brasília-DF, Brasil
4 Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte 59072-970, Natal-RN, Brasil
5 Instituto Federal de Alagoas - 57160-000, Marechal Deodoro-AL, Brasil

received 27 September 2011; accepted in final form 3 November 2011

PACS 89.75.-k – Complex systems
PACS 02.50.-r – Probability theory, stochastic processes, and statistics
PACS 89.65.Gh – Economics; econophysics, financial markets, business and management

Abstract – Weakly nonstationary processes appear in many challenging problems related to the physics of complex systems. An interesting question is how to quantify the rate of convergence to Gaussian behavior of rescaled heteroscedastic time series with stationary first moments but nonstationary multifractal long-range correlated second moments. Here we use the approach which uses a recently proposed extension of the Lévy sections theorem. We analyze statistical and multifractal properties of heteroscedastic time series and find that the Lévy sections approach provides a faster convergence to Gaussian behavior relative to the convergence of traditional partial sums of variables. We also observe that the rescaled signals retain multifractal properties even after reaching what appears to be the stable Gaussian regime.

Introduction. – There are many open problems related to the dynamics of complex systems, which is a topic of intense research \cite{1,2}. Fluctuation phenomena in such systems often do not follow Gaussian, Poisson or similar statistics, e.g., the dynamics of financial markets \cite{3–18}. Some open questions: i) the origin of fat-tailed distributions (see \cite{11} and references therein), ii) the multifractal properties of heteroscedastic signals \cite{19} and iii) non-convergence or ultra-slow convergence to the Gaussian regime \cite{19,20}. The latter led to the idea of Lévy flights by Mandelbrot and later to the idea of truncated Lévy flights \cite{21} by Mantegna and Stanley. Lévy flights are named after Paul Lévy. A seminal result of \cite{22} which is not well known is his theorem on Lévy sections, which is the main topic of this article. Our general goal here is to gain a broader understanding of nonstationary fluctuations seen in financial time series and other complex phenomena, such as music \cite{19}. Our specific goal is to apply the Lévy sections theorem (LST) to time series \cite{20,23} in order to study the approach to the Gaussian regime. The central-limit theorem (CLT) states that the distribution of the sums of N weakly correlated variables converge to a Gaussian distribution for large N. Remarkably, the LST guarantees convergence to the Gaussian regime even for highly correlated random variables. But at what price? We report results below suggesting that different rates of convergence of the central “bell”-shaped part of the Gaussian and the “tails” lead to residual multifractal scaling.

We assume that the Gaussian regime is reached when the first four statistical moments reach the expected values for Gaussians. We analyze the statistical and multifractal properties of heteroscedastic time series obtained along the convergence process in the usual perspective of the classical CLT and also using the extended version of the LST.

The structure of the paper is as follows: the second section presents the definition and data sets, the third section presents the results and discussions, and the last section concludes.

Definition and data sets. – Let us consider a chain of weak-correlated variables with finite variance \{x$_1$, x$_2$, \ldots, x$_N$\}. The classical CLT ensures that the

\begin{footnotesize}(a)E-mail: cesarmnfis@gmail.com\end{footnotesize}
distribution of the variables s_{ni}, where its j-th term is defined as the partial sum $\sum_{i=1}^{n} x_{n(j-1)+i}$, converges to a Gaussian as n goes to infinity. From now on the partial sums $\sum_{i=1}^{2n} x_{n(j-1)+i}$ will be referred to as the CLT approach. For the LST approach we first present some definitions. Given an integer m, partial sums $x_{1}, x_{2}, \ldots, x_{N-2n}$ with $x_{k} = x_{k+n}$. We also define the local variance $m_{\ell,n}$ as

$$m_{\ell,n} = \frac{1}{2\eta + 1} \sum_{i=1}^{2\eta+1} x_{\ell+n-1+i}^2 - \left(\frac{1}{2\eta + 1} \sum_{i=1}^{2\eta+1} x_{\ell+n-1+i} \right)^2,$$

(1)

where $\ell+n$ ranges between 1 and $N-2\eta$. Now we define $\lambda_{\ell,n}$ as the partial sum

$$\lambda_{\ell,n} = \sum_{i=1}^{n} m_{\ell,i},$$

(2)

where $m_{\ell,i}$ is the local variance defined in eq. (1). We consider a positive real number t such that the condition

$$\lambda_{\ell,n-1} < t < \lambda_{\ell,n}$$

(3)

is satisfied. We say that the sum $x_{\ell+1} + x_{\ell+2} + \cdots + x_{\ell+n}$ belongs to the section t, and condition (3) is called the section condition. For a given value of t, one can obtain a new chain $s_{1}^{\ell}, s_{2}^{\ell}, \ldots$ from the original one, with the j-th term given by

$$s_{j}^{\ell} = \sum_{i=1}^{n_{j}} x_{\ell+i},$$

(4)

where the index ℓ is $\sum_{j=1}^{m} n_{i}$. Here n_{i} represents the number of terms used to obtain the ith element on the section chain. In order to clarify the process, the index ℓ in eqs. (1) and (4) ensures that the terms of the section series are obtained from nonoverlapping summations of terms taken from the original chain. It was done in order to avoid a second integration process such as the one used in any standard analysis of the fractal properties of signals. The LST ensures that the distribution of the variable s_{t} converges to a Gaussian as t goes to infinity [20].

Our study is based on time series obtained from the above defined CLT and LST approaches. Our databases comprise the DEM/USD (Deutsch Mark / US Dollar) tickby-tick exchange rates taken from Reuters EFX (provided by Olsen & Associates) during a period of 1 year from October 1st, 1992 to September 30th, 1993. This period corresponds to a total of 1472240 data points, or one data point every 20 s, approximately. These samplings assure us a good quality in our analysis since we are not considering overlapping of variables in both aggregation processes.

Results and discussions. Figure 1 (fig. 2) shows the kurtosis (skewness) behavior subtracted by the value of Gaussian kurtosis (skewness), as a function of time aggregation. In the CLT approach, the time units τ refers to the number of aggregated variables. In the LST approach for a given value t, the time τ_{t} is obtained by division of the variance of section series and the variance of the original time series ($\tau_{t} = \sigma_{S_{t}}^{2}/\sigma_{S_{N}}^{2}$) (see ref. [20] for
Further details). The analysis can be divided into two regimes (ranges 1 and 2), the first one ending at approximately \(\tau = 150 \), as shown in fig. 1. This value was chosen such that the rescaled signals in regime 2 have approximately stationary kurtosis values in both CLT and LST approaches. The analysis started with the initial section \(t = 10^{-13} \) with increments \(\Delta t = 2.5 \cdot 10^{-7} \), which are sufficiently small to guarantee a “minimal” smooth variation of the kurtosis.

Within the LST approach a faster convergence of the kurtosis to zero is observed (when compared to the CLT approach). It fluctuates around zero while in the CLT approach there is a fluctuation around 5 (indicating that the Gaussian regime was not achieved). For comparison, the same analysis was done for a white-noise (WN) signal. As expected for IID variables, the kurtosis remains zero with both CLT and LST approaches.

An important observation concerns the section time \(\tau \), which does not increase monotonically as a function of \(t \), as shown in fig. 3. One possible interpretation for this behavior is given within the broader context of complex evolutionary systems, where mutations can occur in systems promoting enlargement or contraction in the distributions [1]. The fluctuations on frequency distributions of rescaled signals (by the LST approach) are possibly related to the fluctuation of the number of terms of the original chain used to construct each section \(t \).

The inset shows the number of terms (on average) of the original chain used to construct the section series as a function of \(t \). Note that the dispersion around the mean value is large indicating the persistence of heteroscedasticity in rescaled signals.

In the usual aggregation process, done accordingly to the CLT approach, the mean number of terms in a given partial sum is a linear function of time, with null dispersion.

Figures 4(a) and (b) show the average behavior of the generalized Hurst exponent as function of the \(q \)-th moment for ranges 1 and 2, respectively.

In the first range, the value for \(\langle h \rangle \) was obtained from a total of 150 series (300 series) for the CLT (LST) case. For the second range this value was obtained from 600 series (1050 series). Note that the size of each range defines the amount of signals used in the calculation of the value of \(\langle h \rangle \) for the CLT case (discussion above). On the other hand, the amount of signals used in the LST case to obtain \(\langle h \rangle \) depends on the increment \(\Delta t \) used.

We can observe that in the presence of correlations the generalized Hurst exponent is multifractal and also...
Figures 5(a) and (b) show multifractal spectra obtained from the average generalized Hurst exponents for ranges 1 and 2, respectively. Comparing the width between a spectrum of range 1 with its correspondent of range 2, we can reinforce the reduction of multifractality, but not its complete elimination even with the elimination of correlation.

Conclusions. — In summary, we apply the traditional multifractal detrended fluctuations analysis to the non-overlapping series provided by CLT and LST under different conditions based on their kurtosis behavior. We show that although the LST provides faster convergence of the kurtosis in comparison to CLT, some residual multifractality remains in the rescaled signals. The residual multifractality is probably due to a broadening in the rescaled pdf signals. Although the LST approach provides a faster convergence to the Gaussian regime, monofractality is not guaranteed. Thus the residual multifractality could be responsible for the ultra-slow convergence to the Gaussian regime.

We have shown that the LST approach leads to much faster convergence to the Gaussian regime than with the usual CLT aggregations or summations. The LST does not depend on finite variances or statistical independence, as does the CLT. However, our results reported here show that, even after the kurtosis stabilizes to its Gaussian value, there is residual multifractality. A time series with independently and identically Gaussian distributed random variables cannot have multifractality. Indeed they are monofractal with $H = 1/2$. So the residual multifractality indicates that moments higher than those of the kurtosis retain their non-Gaussian aspects. We interpret this residual multifractality as evidence that the higher moments and lower moments converge to their Gaussian values independently of each other. From a practical point of view our results suggest that the fat tails found in the dynamics of financial markets and other complex systems cannot be completely “Gaussianized” on the cheap, even with the LST approach.

We acknowledge financial support from CAPES and CNPq.

REFERENCES

Lévy sections vs. partial sums of heteroscedastic time series

[22] Lévy P., Théorie de l’addition de variables aléatoires (Gauthiers-Villars, Paris) 1927.
