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THE PLANE ISING MODEL

F.A. Berezin

In this paper the statistical sum of a plane Ising model in the absence of
an external magnetic field is computed.

0. Introduction. General methods of investigation in the field of

statistical mechanics are as yet insufficiently developed. Therefore,

mathematical models that permit exact computations are very important. The

plane Ising model [l] is the most interesting of this kind. Onsager [2]

first calculated the statistical sum for this model in the absence of an

external magnetic field. Since then a number of papers have been published

which repeat his results by different methods and investigate this model

from different points of view.
1
 [3] - [l4]. In this paper we also

calculate the statistical sum for such a model. It differs from previous

works on the subject by its greater simplicity.

In §1 a soluble problem is stated. In §2 the necessary mathematical

apparatus is introduced - the integral over anti-commuting variables. The

rest of the paper deals with the solution of the problem.

1. Statement of the problem. Let R
N
 be a part of an integral plane

lattice situated within and on the sides of a square with sides of length

.V — 1, parallel to the axes of coordinates and with vertices at lattice

points. (R
N
contains N

2
 lattice points.) Further, let E

N
 be a real linear

space of dimension 2
N2
 and σ(χ), χ = (m, η) e ff

A
, a system of operators in

Ε
 Λ
-with the properties:

2

o
2
(x) = I, spa(x) = 0, σ (χ) σ (y) = σ (y) σ (χ) (1)

(I denotes the unit operator in E
y
). The function

Ξ
Λ
-(β) = δρ/^

0 (
"

!
'

1 Ί ) < 1
'

ι σ (
'" '"

 ν
*
σ(
™'

η
~·

 υ
 (2)

is called the statistical sum of a plane Ising model in the absence of an

external field. The sum in the exponent extends over all points x=(m, n)

of the lattice R
N
, except for points of the type (N, n) and (n, «V) (for

such points the exponent is not defined).

The aim of the article is the calculation of the function

The physics l i terature devoted to the Ising model is very extensive. (The
bibliography, by no means exhaustive, in M. Fisher's book [19] gives 49
t i t l e s . ) The l i s t at the end of this paper contains works which, in my
opinion, may be of interest to the mathematician.
The existence of operators with these properties is established later in the text.
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Φ ( β ) = ϋ π ι ^ Ι η Ξ ^
Ν-,οο

which is called the thermodynatnic potential.

We mention briefly certain fundamental propositions in the s ta t i s t ica l
mechanics of a latt ice gas. 1 As above, let BN be a part of an integral latt ice
enclosed within a cube with edges of length Ν — 1, parallel to the coordinate
axes and with vertices at latt ice points. Let the dimensions of the latt ice be
k £. 1. Hie particles of the gas can be found only at the latt ice points and at
each point not more than one particle.

Let us examine a distribution of the particles in ΛΛ. Suppose that the par-
t ic les occupy a certain subset MQRN. Henceforth we denote such a distribution
by IM- We form a real linear space by the formal linear combination of
distributions IM- Therefore there is a one-to-one correspondence between the
subsets and the distributions of the particles, dimEN = 2^ . W e examine in EN

the family of operators n(x) defined in the following way:

where %M (X) is the characteristic function of M, n(x) is called the operator of
the number of particles at x. Prom (3) i t follows that the n(x) have the
properties:

rfi{x) = n(x), n{x)n(y) = n(y)n(x), sp η (x) = — dimEN. (4)

In accordance with the basic principles of classical s ta t i s t ica l mechanics the
probability of a distribution ξΜ is given by Gibbs' formula

~ Ι Σ »(*-!/)+βμΛΓ(Μ)

- I 2 J ν(χ-ν)+βιιΝ(Μ)

Μ

where N(M) is the number of points in the subset M. P(M) is the eigenvalue
corresponding to the eigenvector ςΜ of the operator

r ·γι ι y ι

e
 Ν Ν ^

The normalizing factor EN in the denominator of (5) and (6) is called the
statistical sum. It may be written in the form

The parameter (? is equal to-r^-,where k is Boltzmann's constant and Τ is the
Kj.

absolute temperature, the parameter ji is called the chemical potential.

What is added below, to the end of this section, is put in to make the
exposition complete, but is not essential for an understanding of the basic
text of the article.
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Concerning the function υ(χ) it is assumed that
ν (0) = 0, ν (χ) = ν (—χ); ν (χ ~ y) has the physical meaning of the potential
energy of the reciprocal action between the particles at the points χ and y.

A system in which the particles interact solely with those particles that
adjoin them is said to be a (general) Ising model. In other words, the Ising

model is characterized by the fact that υ(χ) = 0 when | χ | > 1 I | χ | = |/ Τ]
χ
?

where the χί are the integral coordinates of x).

Of physical interest are the limits, as IV-> oo, of the various mean physical
quantities, in accordance with Gibbs' distribution (5). These limits are called
thermodynamic quantities, and the limit itself is also often called the
thermodynamic limit.

From (5) it follows that the thermodynamic quantities are expressed directly
in terms of the statistical sum or, more exactly, the thermodynamic potential

Φ (β, μ)=Ηπι -ί-1ηΞ
ιΥ
(β, μ).

Λ)->οο Ι\
κ

For example, the mean density of the particles is equal to

In the limit IV -» oo:

Ρ(β> μ) = ~Η~7Γ~φ(β· μ ) "

Similarly, in the thermodynamic limit the mean (potential) energy is equal to
0Φ

For s ta t i s t ica l mechanics investigation of the singularities of the
thermodynamic potential in β and (1 is of primary interest. The behaviour of the
system under phase transitions is bound up with these singularities. So far such
an investigation has only been made of one physically interesting model (and then
only partially: for β with μ fixed) - that is, for the plane Ising model with
which this paper is concerned. l

There is a connection between the probability P(M) of Μ and the probability
of the complementary set M. To show this in the form most convenient for us, let us
examine the operators connected with n(x) by the relation 2

a(x) = 2n(x) — l. 18)

We observe that the eigenvalues of σ(χ) are ± 1 and that if

G{X)IM=IM, then σ (*) % = ~ % ·

Expressing n(x) in terms of σ(χ) and substituting this expression in (5) and

The thermodynamic potential for an Ising model is a simple function of β
having one singular point. The investigation of this singularity is a simple
exercise in analysis and is omitted here. We note that there are no papers in
which the singularity of the thermodynamic potential in an Ising model is
investigated without a preparatory calculation of the thermodynamic potential.
From (8) and (4) it follows that the operators O(x) satisfy equations (1)
(See the note on p. l).
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(6), we find a new expression for the s ta t i s t ica l sum and for the probaBility of
M:1

"Μ Σ ψ + $)

where

^ 4" v^x~y) σ (χ) σ {y)~h 2 ° < (9)

The operator (6) whose eigenvalues are the probabilities P(M), written in terms of
O(x), has the form

- J

Prom this it follows that the Gibbs probabilities of Μ and Μ are connected by the
relation p(M, (3, h) = p{M, B, —h). In particular, when h = 0 these probabilities
are equal. In this case it can be shown that the system is completely invariant as
far as the substitution of particles for holes or holes for particles is concerned.

It is precisely for h = 0 that the statistical sum in a plane Ising model is
calculated. It is appropriate to note here that in the case of attraction between
the particles (v(x) > 0) phase transition in accordance with the theorem of Lee
and Yang [ΐβ] is possible only when h = 0.

We note, in conclusion, that another physical system, namely the system of
reciprocal spins (the simple ferromagnetic model) has the same properties as the
lattice gas. Under the spin interpretation of lattice-statistical physics the
operators O(x) and the parameter h assume an independent statistical meaning: O(x)
is the spin operator at x, and h is the rate of stress of the external magnetic
field. The statistical sum in this case is given by (9), which differs from (7)
by an unimportant factor. Formula (2) is a particular case(9) when h = 0, k = 2,

|i;(+l, 0) =—!>!, | D ( 0 , ± 1 ) = — V
2
, V{X) = Q

where χ 4 (±1,0), χ 4 (0, ± 1).

2. Integration with respect to anti-commuting variables.
2
 Let <3 be

the complex Grassman algebra with the generators
3
 x

lt
 ..., x

n
. Functions in

anticommuting variables

/(*)= Σ Σ fii i f t * u . . . χι

Strictly speaking, the formulae given below are true only for periodic
boundary conditions (that is, if we identify the opposite sides of the cube
and so view the lattice not really on a cube but on a torus). In the general
case there arises a distortion connected with the boundaries of the cube. It
is, however, well known that this distortion is negligible for the calculation
of the thermodynamic potential (see, for example, [l5j).
The material in small print at the end of this section is put in for
completeness, but is not essential for an understanding of the basic text of
the ar t ic le .
We recall that the Grassman (or exterior) algebra is defined by the sole
relations between the generators: xixj + xjxi = 0 , x\= 0.
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are called elements of @ . The integral is defined in the following way:

i dxi = 1, \ dxt = 0.

A multiple integral is defined as repeated, and it is assumed that

the symbols dxi anticommute with the xi and with each other. Prom this

definition it follows immediately that

\
i
f{x)dx

n
 . .. dxi = fi „.

The integral over anti-commuting variables has many properties analogous

to the properties of an ordinary integral. For us the following properties

are important:

1) The formula for a linear change of variables. Let Xi = ^ai
h
y

k

where the aik are complex numbers, det || aik \\ 4- 0. In this case the yi,

like the xt, are a system of generators of @ . The following identity
1

holds:

f (
x
 (y))

 (
lVn ••· ̂ Z/i = § / (

x
) dx

n
 ... dxi det j| a

i h
 ||. (10)

2) Let @ be an algebra with 2n generators x
if
 • .., x

n
, x\, • •., a;*,

Then

. . . x
ip
xt

q
, ... xt^e^

 XiXi
 dx* dx

l
 ... dx*

n
 dx

n
 = 8

pq
 (8

hil
, .. . 6

i p i p
, + . . . ) .

where the dots represent terms obtained from the first by all possible

permutations of the indices i
x
', ... i

p
', the sign depending on the parity

of the permutation. In particular, if the set of indices i
lt
 ... i

p
 does

not coincide with i
1
', ... ί

ρ
', then the integral vanishes.

3) If aik is a skew-symmetric matrix, then
2

e2 Σ ^ Λ dXnmmm dXi = ( d e t n ath ^ ( 1 1 )

Properties 1) and 2) are direct consequences of the definition of the

integral, property 3) follows from 1). First let A = \\ a{k || , a real

skew-symmetric matrix. Then there exists an orthogonal unimodular matrix

C such that

o io i\

ι
 Jj.

1
 We emphasize that the analogous formula for an ordinary integral differs from

(10) by the replacement of det || aik \\ by || det aik H"
1
·

2
 Concerning the sign of the square root, see below. We emphasize that the

analogous formula for the ordinary integral differs (11) by the replacement of

i _I
(det!K

ft
||)

2
by det [(2n)-i || a

ih
 ||]

 2
.
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When we perform the linear substitution of variables with the matrix C, we
find that

e2 Σ aih*ix

λ ι · · · \ f 0 Γ e v e n " = (det || aik ||)2.
θ for odd ra

We now note that in accordance with the definition of the integral, the
left-hand side of (6) is a polynomial in the elements of the matrix
|| aik || . Consequently the right-hand side also has the same property. *•
Therefore (11) is true not only for real, but also for complex matrices
|| aik || · Finally, the sign for the square root in (11) must be chosen in
such a way that the polynomial on the right-hand side becomes +1 for the
matrix

where τ =

We shall see below that the calculation of the s t a t i s t i c a l sum in the
plane Ising model leads to an integral of type (11) with a special matrix
|| aik || · For the actual calculation of the integral i t will be convenient
to use not the final formula (11) but the method of i t s derivation: a
linear change of variables simplifying the matrix in the exponent.

Apart from integration over a Grassman algebra, we can also introduce
differentiation, in fact, not just one but two: left and right. Differential and
integral calculus on a Grassman algebra is strikingly like ordinary analysis.

This analogy appears already in the formulae quoted above. We give the
necessary definitions and deduce some further characteristic formulae.

DEFINITIONS, a) The left-hand derivative is the linear operator in 0)
which, acting on the products of the generators, is equal to

where 6jy is the Kroneker symbol. The right-hand derivative is defined similarly:

^ 1 "' ' % J^h

 = Xil • ' " % - A · ip ~Xh··· Xip-zXiifi>*, ip-1 + · · ·

b) An element /(x)6® is said to be even if it is a linear combination of
products of an evert number of generators, and odd if i t is a linear combination

Thus, in the course of events we have obtained a proof of the well-known
property of skew-symmetric matrices: if aik - — aki(i = 1 n) then
det || aik || = R2. where R is a certain polynomial in the aik, and R = 0 if η
is an odd number.
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of the products of an odd number of generators. If / is an even element, then

— / = — / — , if / is an odd element then ^—f=i^—· Formulae:

a) If / is an even element, then for any g

T§T <">-bsr

If / is an odd element, then for any g

b) The formula for integration by parts is true:

c) The general formula for a change of variables is true. If

P = I * 2 P + 1

det||aift[|=jfc0,

then

{xi (lJ), · · • ι xn (y)) Δ" 1 (x/y) dyn .. . di/j = \ / (xu . . ., xn) dxn ... dxu

where

'" dyn

\(z/y)<
dxn

'" dyn

(In the expression for the Jacobian the derivatives are written in the customary
way in view of the fact that the elements xi are odd, and for them the left- and
right-hand sides coincide.)

Note that in the ordinary analysis, in the formula analogous to (6), the
Jacobian has the exponent + 1 .

The condition det || aik || 4 0 guarantees that the change of variables is
invertible.

Analysis in a Grassman algebra is worked out in [17] in connection with the
needs of the method of second quantification. The formula for a general change of
variables is given in [ is] .

3. The combinatorial problem. We transform the expression (2) for the
s t a t i s t i c a l sum. For brevity we put βυί = ui and note t h a t

eca(x)o(v) = / ch c + σ (a;) σ (^) sh c = ch c (/ + σ (χ) σ (y) th c).

Using t h i s ident i ty we obtain for ΞΝ (β) the new expression
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ΞΝ (β) = 2»2 (ch Ul ch ιι2)»2ΨΝ (λ,, λ2), λ ; = th ut,

Ψ Λ τ ( λ 1 , λ 2 ) =

^ Π , n)a(m + i, n)]\I+ %2a {m,n)o {m, ra
(m,

The function^jviXi, λ2) is a polynomial of degree ^ N2 in \i and λ2,
separately:

iV2

(13)) 2 ( ^ ^ ^
Αχ, ΑΪ=0

The coefficients C\r(A
lt
 A

2
) have a simple combinatorial meaning.

Let us examine all closed paths on the lattice subject to the sole

condition that each lattice point belonging to a path is common to either

two or four links of the path. A typical example is shown in Figure 1.

0

Ο Ο ( ο

ο

Pig. 1

CN (Au A2) is the number of such paths having A1 horizontal and A2

vertical links. The combinatorial meaning of the coefficients CN(Al,A2)
follows easily from ( I ) . 1 This was f irst discovered by Kac and Ward [8]
(see also [ l l ] ) . The combinatorial problem so arising will next be solved
by means of an integral over anticommuting variables.

H. The integral representation of the function *ΡΝ(λι, λ2) by means of an
integral over anticommuting variables. We consider the anticommuting variables
[a (m, n), a* (m, n), b (m, n), b* (m, n), (m, n) 6 i?jv·] The variables

a (m, n), a* (m, n) and b(m, n), b* (m, «)will henceforth be called conjugate
to each other.

λ
2
) in powers of λ ^ λ

2
 we obtainExpanding the expression (12) for

a sum of terms of the form

2-iV2 s p [ σ { X i ) . . ι 2

Prom (1) i t follows that 2~m sp [σ (χ{) ... a (^2A1+2A2)1 — 1 when each operator
O(xk) under the trace symbol occurs an even number of times (0,2 or 4 times),
and that sp [σ (xj) ... σ (x2Al+2A.2)] = 0 otherwise. Thus, the coefficient of
λ ^ λ ^ ϊ η this expansion is different from 0 (and equal to 1) if and only if
the points xu ..., X2A1+2A2 He along a contour described above. I t is
obvious that for this contour there are A^ horizontal and A2 vertical links.
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The central point in the calculations is the proof of the formula

Ψ
Ν
(λ

1:
 λ

2
)= ̂  J| [1 + λ{Κ

2
α*(τη-{, n)b*(m, n~i) + a(m, n)b(m, n) +

+ (k
t
a* (m — 1, re) -f λ

2
δ* (τη, η— 1)) (a (m, n) + b (m, ri)) +

2
α (in, ri) b (m, n) a* (m — 1, re) b* (m, re— 1)] χ

X exp \ ̂ l
a
 (

m
i
 n
)

 a
* (

m
->

 n
) + b (m, ri) b* (m, ri)] J- χ

Χ γ[ da* (m, re) da (m, ri) db* (m, re) db (m, ri). (14)

The product in (14) is extended over all lattice points of B
N
; the sum in

the exponent is also taken over all points of R
A
-.

The subsequent calculations proceed in the following way.

We denote the contents of the square brackets in (14) by 1 + F
m
,n. It

is easy to check that

1 + F
m> n
 = exp {λ^α* (τη — 1, re) b* (m, ri) -\-a (m, ri) b (m, ri) +

+ (λ^* (τη — 1, re) + λ
2
&* (m, re— 1)) (a (m, ri) -\- b(m, n))}.

Therefore, the expression (14) can be rewritten in the form

ψ η χ \ __ f 6 2 [ λ ι λ 2 α * < ί 7 ι ~ 1 ' η ' b*(m,n-l)+a(m,n) b(m,n)]

V β Σ Κ λ Ι α * ( m ~ l ' «)+^2b* (m, n-1)) (a(m , n)+b (m, n))]

χ ^ [ a (m. n) a* („,, n)+ 6 (m. n) b* (m, n)] j j ^ * ^ ^ n ) ^ ^ ft) d 6 % ( | η > ^ rf& ( | Λ > n )

The integral (15) is a particular case of (11). It (or rather a somewhat

modified integral Ψ) is calculated in the following section.

We now turn to the plan outlined. We begin with the proof of (14).

The expression in square brackets in (14) has the form 1 + F
m
,n, where

Fm,
 n
 = F(a* (m— 1, re), b* (m, n — 1), a(m,n), b(m,n)).

Expanding the product we obtain a sum of expressions of the form

Fm1,n1 • • • Fma,na· (16)

Now we substitute in (16) for the functions F
minii

 their expressions in

terms of the variables. 4s a result we get a sum of the form

[X
i
\
2
a*(m

l
 — i,n

l
)b*(m

i
,ni — l)][a(m

2
,n

2
)b(m

2
n
2
)] ..., (17)

where the number pairs (mi, ni) over the brackets are the indices of that
function, F

m i
, ni, in which the expression in the brackets occurs as

summand. Let us suppose that the integral of the product of (17) and

e
^ [aa*+bb*] ^

g
 different from zero. We mark the lattice points whose

coordinates are written over the brackets in (17), and about each marked

point we write the content of the corresponding bracket. Now we observe
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that by §2, the integral of the product of (17) and e% l
aa
*+

b
*>*l

 i s

different from zero if and only if each variable occurs in (17) along with

its conjugate. The function F
m<n
 depends on a (m, n), b (m, n),

a* (m — 1, ri), b* (m, η — 1). Therefore, if at the point (m\ n') we

write a(m', n'), then the conjugate variable a*(m', n') is written at the

point (m' + 1, n'), next to (m\ n') and situated to its right. If at the

point (m", n") the variable b(m", n") is written, then the conjugate

variable b*(m", n") is written at the point (m", n" + 1) next to (m", n")

and above it. Prom this it follows that if the product of two variables is

written at any point, then among the points in question there are two

neighbouring points, and if the product is of four variables, then among

the points in question there are four neighbouring points. If at one of

the marked points there is written a variable a*(m, n) or b*(m, n) and at

another the conjugate variable a(m, n) or b(m, n), then we join these two

points by an arrow directed from the point without the asterisk to the

point with the asterisk. (Figure 2)

ο >.

Pig. 2

It is clear from this that we turn the set of marked points into a closed

path whose horizontal links go from left to right and whose vertical links

go from bottom to top. The set of closed paths so obtained is the same as

that which arose in the description of the statistical sum: each point on

the path is joined to two or four neighbouring points of the path. It is

obvious that this correspondence between expressions of the type (17)

giving a non-zero contribution to the integral and the closed paths we are

interested in is one to one.

We examine in more detail the contribution to the integral (13) of

various closed paths. Suppose that (m, n) is a point of self-intersection.

In this case we have written down the expression

λ
4
λ

2
α* (τη — 1, η) b* (TO, η — 1) α (m, η) b (τη, ή).

We replace the point (m, n) by two neighbouring points, and about the

first we write λ
1
λ
2
α*(πι — 1, η) b* (m, η - I), about the second

a(m, n) b (m, ή). We join the first point to (m - 1, n) and (m, η - 1),

and the second to (m + 1, n) and (m, η + 1). We leave the direction of the
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arrows as before. In this way for each point of self-intersection we
transform the i n i t i a l path into a path without self-intersections. If both
points obtained as a result of the transformation of the point of self-
intersection belong to the connecting component of the new path, then we
call this pair of points a double point (see Figure 3. The path shown in

Pig. 3

this figure is obtained from that in Figure 2. It is clear that the first

path has split into two connected components of which one has a double

point.)

With the path so obtained we associate an expression of type (17),

multiplying the factors written down for each point. Since the factors at

the points where there was no self-intersection remain unaltered, and

since each point of self-intersection breaks into two, while the product

of the factors that correspond to the branch points is equal to the factor

earlier ascribed to the original point, we see that the product of all the

factors corresponding to the initial path and to the new path without

self-intersections is one and the same. We may, therefore, limit ourselves

to an investigation of paths without self-intersections but containing,

generally speaking, double points. The possible presence of double points

is not further mentioned.

Next, if the path is not connected, then the contribution from it is

equal to the product of the contributions from the connected components.

So we need only investigate connected closed paths without self-inter-

section.

We fix a point occurring ina path. The following possible cases arise:

either at this point one link begins and one ends, or two links end, or

two links begin. At the point the product of a numerical factor and of two

anticommuting variables is written. In the first case we attribute the

numerical factor to that link which ends at the given point. In the

second case the numerical factor is equal to λ
1
λ

2
, one of the links is

horizontal and the other vertical. We give factor λ
1
 to the horizontal

link, and λ
2
 to the vertical. Finally, in the third case the numeral

factor is equal to 1. Thus, for each horizontal link in the path we put

λ-L, for each vertical, λ
2
. By §2 the integral over the product of the

anticommuting factors assigned to the vertices of the path and
 e
Zj

[aa
*+

bi)
*

]

is equal to +1 or -1. Consequently, the contribution from a closed path
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without self-intersection, to within a sign, is equal to λ^λ^
2
, where k

x

is the number of horizontal and A
2
 the number of vertical links in the

path. We show that the contribution, in fact, is +1.

We call a point regular if one of its relevant links begins and the

other ends at it. We call the remaining points singular. We say that a

singular point is of the first kind if both its links begin, and of the

second kind if they both end at it.

Let us examine a singular point of the first kind (m
0
, n

0
) and

beginning with it go around the contour moving first in a vertical

direction. We write out in the order in which we meet them the variables of

integration

[a (m
0
, n

0
) b (m

Q
, n

0
)] [b* (m

0
, n

0
) b (m

0
, n

0
 + 1)] [b* (m

0
, n

0
 + 1) a (m

0
, n

0
 + 2)] ...

(18)

We begin to integrate the product (18) with the Gaussian weight factor

e
Zl

aa
*+

bb
*\ moving from left to right: first we integrate b (m

0
, n

0
) b* (m

0
, n

0
) X

x e
b (m

0
, n

0
) b* (m

0
, «

0
)

;
 then b (m

0
, n

0
 + 1) b* (m

0
, n

0
 + 1) e

b
<
m
o. «o+D t>* (mo, n

o
+D

and so on. It is easy to see that as long as we go in the direction

indicated by the arrows, that is, as we do not reach the next singular

point, we get +1 on integration. The first singular point we reach is

obviously a point of the second kind. The last link before this point may

be either horizontal or vertical. We look at the two cases separately.

L A S T L I N K H O R I Z O N T A L . The part of the product (18)

corresponding to the immediate neighbourhood of the singular point

(m
lt
 Πι) has the form

. .. [e*a(mi — l, rai)][a*(m! — 1, nj b* (m
u
 n^ — 1)] [o*b (m,, n^ — 1 ) | .. .

(Here ε* denotes one of the possible variables preceding a(m
1
 - 1, n

x
) :

either ε* = α* (mj, - 2 , n^, or ε* =" fa*Cm
1
 - 1, n

x
 - 1). Similarly

0* = b* (m
lf
 ri! - 2), or σ* = α* (m^ n

t
 - 1).)

The process described above ends with the integration of the expression

ee*e
8E
*. We continue this process, integrating

a (mi — ί,η^α* (mi — I,7i
1
)xe

a
<
m
i-

1
'
n
i)°*<

m
i-

1
.'n>. As a result we obtain a

product of the form

a(m
0
, n

o
)b*(m

u
 ni — l)[o*b(m

u
 ra

t
 —1)] [μ*σ] . .., (19)

where μ* denotes the variable occurring in the pair with σ. Before

integrating (19) we interchange b*(m
lt
 n

1
 - 1) with the two variables to

its right:

β (mo, n
0
) [a»b (m

u
 Hi — l)]b* (m

lt
 n

t
 — 1) [μ*σ] ... (20)

The products (19) and (20) are equal. Integrating

b(mu πι — l)b*(mu n1— 1) eb(™i,m-i) ^(mi.ru-D,
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we get from (20) an expression of the same structure as (19):

a (tn
0
, n

0
) σ* [μ*σ]. . .

Consequently we can apply the preceding method: interchange σ* to the

right of the bracket and integrate σσ*ε
σσν
. Continuing the process

further we come to integrals corresponding to the next singular point. We

mention that on this part of the path, when we move along the contour in

the direction opposite to that indicated by the arrows, at each step we

get an expression of type (19).

Now we examine the second possible approach to the first singular

point.

L A S T L I N K V E R T I C A L . In this case the part of the product (18)

corresponding to the neighbourhood of the singular point (m
lt
 n

±
) has the

form

. . . [e*b (mi, «i —1)] [a* (m
1
 — 1, n

t
) b* (m

u
 n^ — 1)] [o*a (mj — 1, «i)].. .

We shall integrate over the variables preceding 6(mx, nx - 1), and inter-
change a*(m1 - 1, ηχ) and 6*(m1, r^ - 1). Since the variables anti-
commute, we get a factor (- 1). Integrating then

b(mu Wj —1) b*{mu n^ — 1) ^ ( « ι , ^ - ο ϋ * ( m i , n1-i)>

we obtain an expression of type (19):

a(m
0
, η

ο
)σ*[μ*σ]. . .

Applying the preceding arguments we find that as long as we don't reach

the variables corresponding to the next singular point, all the following

integrals are +1.

The next singular point, like the initial point, is of the first kind.

As we come up to it we must again take separately the case when the last

link is vertical, and that when it is horizontal.

L A S T L I N K V E R T I C A L . That part of the product (18) corresponding

to the neighbourhood of the singular point (m
2
, n

z
) has the form

. . . [b* (m
2
, n

2
) ε] [a (m

2
, n

2
) b (m

2
, n

2
)] [a* (m

2
, n

2
) σ] ...

After integrating over all variables up to and including ε, ε* we get

κα (m
0
, n

0
) b* {m

2
, re

2
) [a (m

2
, n

2
) b (m

2
, n

2
)] [a* (m

2
, n

2
) σ]

where κ = + ι or κ = - 1, depending on whether the last link before

(mi, rii) is horizontal or vertical. We shift b*(m
2
, n

2
) to the right of

the first bracket written down and integrate

b(m
2
, n

2
)b*(m

2l
 n

2
) e

b
 (

m
^
n
^
h
* ̂

n
^

n
^.

As a result we get an expression that differs from (18) only by a factor

and by the notation of the variables:

κα (m
0
, n

0
) a (m

2
, n

2
) (a* (m

2
, n

2
) σ) ... (21)
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Thus, we return to the situation already reviewed. Now we pass on to

the second case.

L A S T LINK H O R I Z O N T A L . The part of product (18) corresponding

to the neighbourhood of the singular point has in this case the form

... [a* (m
2
, n

2
) ε] [a (m

2
, n

2
) b (m

2
, n

2
)] [b* (m

2
, n

2
) σ] ...

After integrating over all variables up to and including ε, ε* we get

κα (m
0
, n

a
) a* (m

2
, n

2
) [a (m

2
, n

2
) b (TO

2
, n

2
)] [b* (m

2
, n

2
) σ] ...

We note that \ a*ae
aa
* da* da — — 1. Therefore, integration over

a*(m
2
, n

2
), a(m

2
, n

2
) gives

( — 1) κα (m
0
, n

0
) b (ra

2
, n

2
) [b* (m

2
, n

2
) σ] ...

The remaining product differs from (21) only by the notation of the

variables. Any subsequent movement along the contour repeats these

situations.

The last singular point on our path is of the second kind. Therefore

in the last part of the path, consisting of regular points the integrand has

the form (19). Omitting the sign we write down the integrand corresponding

to the immediate neighbourhood of the initial point (m
0
, n

0
):

a (TO
0
, n

0
) a* [a* (m

0
, n

0
) σ]. (22)

Transferring σ* to the right we see that the integral of the product of

(22) and the Gaussian factor
 e
a(m

0
, n

0
) a* (m

0
, n

o
)+aa* i

s + 1 -

We denote by Λ^ the number of singular points of the first kind that

we pass on going round the contour so that the last link is horizontal,

and by N
2
 the number of singular points of the second kind that we pass on

going round the contour so that the last link is vertical. The analysis

given shows that the sign of the integral of the product (17) and the

Gaussian factor is equal to (—l^i+^s-
1
. The term - 1 in the exponent

arises because the initial point plays a particular role: although on

approaching it the last link is horizontal, nevertheless on passing

through it the sign does not change.

Thus, our assertion concerning the sign is a consequence of the

following geometrical lemma:
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L E M M A · Let X be a connected, closed, simple contour on a square

lattice (which may have double points) in which each horizontal link goes

from left to right and each vertical link from bottom to top.

We call a point of the contour from which two links start a singular

point of the first kind, and a point at which two links end a singular

point of the second kind.

We examine the circuit around the contour, denote by iV
x
 the number of

singular points of the first kind that we pass so that the last link is

horizontal, and by N
2
 the number of singular points of the second kind that

we pass so that the last link is vertical.

Then the number N
±
 + iV

2
 is odd.

The lemma is proved in §6.

Returning to the integral (15) we find that it is equal to the right-

hand side of (13), which defines the function Ψΐλ^ λ
2
) .

5. Calculation of the thermodynamic potential. We suppose for

definiteness that the initial square contains the points χ = (m, n) with

the coordinates O ^ m , η 4 Ν - 1. We add to it the points

(m, N), (,V, η), (Ν, JV)and identify the opposite sides of the larger

square: we put (m, N)= (m, 0), (,V, n) = (0, η), (Ν, N)= (0, 0). So we

get an integral lattice on a torus which we denote Τ
N
. Now we replace

the quadratic form in the exponent of the integrand in (15) by a similar

form in which the summation extends over all integral points of Τ
N
.

The new quadratic form differs from the old one by the additional

terms

2ft^
a
a*(m—1,0)6· (m, N — 1) +...].

Let the matrix of the old quadratic form be_Aj\r, and of the new A N

The integral obtained by substituting in (15) A
N
 for A

N
 is denoted by

Ψ^. To calculate the thermodynamic potential we must find lim ̂ In Ψ
Λ
'.

Λ'-νοο "

1 1
In accordance with (11) this limit is equal to -̂ - lim -r~ In det AN. Since

AN and AN differ only in their boundary terms, we have

lim -r̂  In det AN = lim -r̂  In det 2Λ-. The matrix AN is block-cyclic1 and can

therefore easily be reduced to a block-diagonal form which permits us to

T h i s means t h a t AN = \\a(m, n; m',n') \\ = \\ a {m— m', n — re') ] | , where t h e
a(n, n) are matrices (in our case of order 4), and (m, η)ζΤΝ, (m', η')ζΤΝ.



16 F.A. Berezin

find its determinant.
1

The calculation becomes most convenient when we make a change of

variables in the integral $)v.

We introduce new variables by means of a Fourier transformation:

In al l the derivations of Onsager's formula known so far the same situation
arises: by means of one reduction or another the statist ical sum can be

expressed in the form det A$ (i is an index denoting the author), where A$
is a matrix whose elements have lattice points of i?A-as indices. Then by means

of the addition of boundary elements A$ becomes a block-cyclic matrix Λ$
whose determinant can also be calculated. The limit equation

lim — In det A<£> = lim — In det A{}) u\
V2 Ν* Λ WΝ*

does not worry the authors so t h a t they do not even n o t i c e the r e p l a c e -

ment of A$ by A$ ( see, for example, [ l l ] ) . However, [l2j i s an exception,

for here an attempt i s made t o prove the equat ion; but in fact a l l t h a t i s

established is

lim -rj- In det/l^ <!lim -r^ In det A$.

So far there are apparently no mathematical papers to which we could refer
for a rigorous proof of the equation we need. Therefore, our derivation of
Qnsager's formula is not, str ictly speaking, complete.

To support our firm opinion on the validity of the equation (·) we note

that it is very easy to prove the analogous equation when A$ is not a block-
cyclic, but simply a cyclic matrix (that is, it has the form described in the
preceding remark, but the elements a (m, n) are not matrices but numbers).

In conclusion we draw attention to a curious circumstance. We replace in
(2) the summation over RNby that over the torus TN. The stat ist ical sum so
modified is denoted by Ξ^(β). It is easy to prove (for example, in [l5j) that

lim ^ Ξ * ( β ) = 1ϊπι ^ Ξ ^ ( β ) .
ΛΓ-KJO J v iV->oo i v

The calculation of Ξ^ (β) reduces to a combinatorial problem Just like that
for the calculation of SJV (β) > but with this difference that the paths now
examined are not on the lattice ΑΛ- but on the torus TN. At first glance it
seems that we could then proceed exactly as for the calculation of ΞΛ·(β). It
turns out, however, that the geometrical lemma on which the proof of the
integral representation [14] is based is not valid for lattices on the torus!
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a{m, η)=

VI

pq

pq

2πί

5, q) e
 N

(mp+nq)

Ν
— (mp+nq)

2πι

a* (m, TZ) = -^ ̂
 a
* 0>' 1)

 e
(mp+nq)

XT (mp+nq)

(23)

where ρ and g are pairs of integers which we may regard as coordinates of
the lattice points on the torus T.

Prom the relation

N
~

l

n=0

l when p = 0,

0 when ρ =/= 0
(24)

it follows that the matrix of the transformation (23) is unitary and that

its determinant is 1. Using (24) it is easy to find an expression for the

exponent in terms of the Greek variables:

3 a* (m
—

The remaining terras are transformed similarly. As a result the

exponent becomes equal to SQ(p, q), where

Q (p, q) = λ,λ
3
α· (ρ, g) β* (-ρ,

2πίρ

(P-Q)

2niq

+ λ
2
β* (ρ, q) e^) (α (ρ,

 ?
) + β (ρ, <?)) +

9
) α* (ρ,

 9
) + β (ρ,

 9
) β* (ρ, ?).

Thus, the integral is split into the product of the integrals that
correspond to the points pairs (p, q) and (—p, —q), and of the integral
corresponding to (0, 0). The integral over the eight variables
corresponding to (p, q) and (-p, -q) can be easily calculated:

\ g<5 (P. a) + Q (~P, —<?) χ

>: da* (p, q) da (p, q) da* (— p, —q)da( — p, —(?) ο?β* (ρ, q) dfi (— ρ, —q) —

( ι 1 ! ι 1 ! • W ! 0 1 1 / l ^ π Ρ Ι ί 2 π ρ \
--- 1 -γ- Λ^ ~|~ λ« -j— Κ-,Κη ~\~ t-dK^K^ Ι Λ*ι COS —rŷ  —γ~ Ao COS - r j —

— 2λ< cos -Tf 2λ
2
 cos —jr- .

1
 TV *• Ν

The integral over the variables a(0, 0), 3(0, 0), a*(0, 0), β*(0, 0) is
obtained from the expression above by putting in it ρ = q = 0 and
extracting the square root. (The sign of the root must be chosen so that
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when λχ = λ 2 = 0, we obtain + 1 . ) Thus, for the function Ψ]\τ we get the

f inal expression

ΨΛ-(λι, λ , ) =

The product is taken over all lattice points on the torus TJV, the exponent

τ, arises from the fact that the factors corresponding to each pair of

points (p, q), (-p, -q) occur twice.

Taking into account the connection between the function Ψ ^ λ ^ λ
2
) and the

statistical sum S.
v
(P),we obtain from this an expression for E

N
 (β). Taking the

logarithm, dividing In E
N
 (β) by/V

2
, going to the limit as Ν -* co, and taking into

account that lim jp, In Ψ γ = lim — In Ψ
Ν
, we find the well-known expression for

the thermodynamic potential:

Φ (β) = lim -^- In E
N
 (β) = In 2 + In (ch $

Vi
 • ch fa) -f-

3̂ 2 \

2π2π

In [ 1 -ρ "k\ -\- "K\ -f- λ^λ^ 4- 2λ 4 λ 2 (λι cos φ 2 |- λ2 cos φ4) —

ο ο

— 2λ; cos ψ! — 2λ4 cos φ 2] άψι ί/φ2,

where λ
4
 = th βΐ;

1;
 λ

2
 = th βί;

3
.

4 few remarks about our result. First let us suppose that v
±
 > 0 and

v
z
 > 0 (This means that the particles attract one another.) In this case

also λ-ι > 0 and λ
2
 > 0. (We assume that Ρ > 0 as a consequence of the

physical meaning of the parameter.) The expression under the logarithm
has a minimum when (p

t
 = φ

2
 = 0: this minimum is equal to

It is not difficult to see that Φ(1?) is a holomorphic analytic function

in the vicinity of each point β
0

 f o r
 which Κ

++
(β

0
) > ο, and that 3>(|3)has

a singularity at Be, which is a root of the equation #++((?)= 0. This

equation has a unique root 0
C
 > 0 which defines the temperature of the

phase transition J
c
 = •=---, where k is Boltzmann's constant. In the case

Vj. < 0 and t>
2
 < 0 (repulsion), the expression under the logarithm sign

has a minimum when q>
±
 = <p

2
 = κ, and this minimum is equal to

We can treat similarly the cases v^ > ο, υ
2
 < 0 and υ

±
 < 0, r

2

 >
 0.

The expression under the logarithm in these cases again is strictly
positive for all β Φ- (?

c
 and is equal to zero for the unique value (?

c
. The
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temperature of the phase transition is defined in the same way. It is

curious to note that it does not change under the substitution

We note that the transition from the sum of logarithms to the integral

(26), which we made when ,V-» oo, is justified because the expression under

the logarithm sign in (26) is positive.

6. Proof of the lemma. We denote by X a connected closed simple

contour on a plane lattice; we go round it and mark those singular points

of the first kind which we approach so that the last link is horizontal,

and those singular points of the second kind which we approach so that the

last link is vertical. Let the total number of marked points be κ (X). We

have to show that κ (Χ) is odd.

We begin with an intuitive argument. We observe first of all that

instead of considering a closed, simple broken line whose links consist

of horizontal and vertical segments joining the points of an integral

lattice, we may consider a similar broken line consisting of horizontal

and vertical links that are in no way connected with the lattice. Let X

be a broken line of this kind, and L
lt
 L

2
, L

3
 its parts consisting,

respectively, of a straight-line segment, of two straight line segments

and the angle between them, and of three straight line segments and the

two angles between them. We say that a contour X' is an elementary

transformation of X if it is obtained from X by replacing one of the

parts Li by L[, where L\ is a broken line completing Li to a rectangle,

for example, L[ may consist of three segments and two angles and have the

same ends as L
x
. It is easy to check that κ (X) --- κ (Χ') or

κ (Χ) — κ {Χ') ±2 depending on the direction of the circuit. On the

other hand it is clear that by a sequence of elementary transformations

any closed simple contour with sides parallel to the coordinate axes can

be transformed into a rectangle. Since for a rectangle x(X) = 1 this

then establishes that for any contour x(£) = 1 (mod 2).

Unfortunately rigorous proof that an arbitrary contour can be trans-

formed into a rectangle by means of elementary transformations is

complicated, therefore a complete proof of the lemma is based on another

idea.

We examine the smallest possible rectangle with sides parallel to the

coordinates axes such that there are no points of the contour outside. We call its

sides, respectively, the lower, upper, left and right supporting lines of the

contour. We call the distance between the left and the right supporting lines the

width of X and denote it by s(X). We order the points of X lexicographically:
*i = (™i.

 n
i) < *2 = (">2> "2) if

 m
i

 < m
2

 o r
 if ™i = ™2

 a n d n
i <

 n
2· Th

e
 least

point in the sense of this order, x
0
 = (m

0
, n

0
), is called the beginning of L, the

largest is x
0
 = (m

Oj

 n
o)·

It is obvious that *(3£) =- m0 — m0. If s(X) = 1, the contour is a rectangle.
In that case, κ (X) = J, and the Lemma is true. If s (X) > 1, we construct a new
contour X1 with the properties 1) κ (X\) =; κ (Χ) mod 2; 2) the lower, upper and
right supporting lines of Χι l ie respectively, not lower, nor higher, nor to
the right of the analogous lines for X; 3) The beginning xx of X\ satisfies
xi > *0> where x0 is the beginning of X.

The proof of the Lemma is contained in the construction of the contour^,. For
s (Xi) > l,then we construct a X2, in a similar way, and if necessary, Xs and so
on. Since the beginnings of these contours satisfy the inequalities xi > xi-t and
since a l l the contours satisfy condition 2, there must be in this sequence a
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contour X
hl
 of smaller width than X. If s (X

hi
) > 1, then for the same reason

there is a contour Xh
Z
 such that s (je^) <

 s
 (=55Ά)), and so on. Consequently in the

sequence X
h
 there is a rectangle X

n
. As we have already noted, κ (X

n
) — 1

 a n d s 0

χ ( ϋ ) - Ι (mod 2).
We proceed to the construction of the contour Χι . We move from x

0
 to the

right one step and produce a vertical line I. We denote by y
±
 the point on I,

joined to x
0
 by a horizontal link; and by yk (k = 2, 3, . . . ) . the points on I

belonging to J? and lying above y
1 (
 numbering from bottom to top.

We say that the point yi for i > 1 is in general position if it does not lie
on a vertical link of X . We call yi a point of general position if it is not
the lower end of a vertical link.

Let us examine the possibilities that arise. (They are all illustrated in
Figure 4.)

sj
y-γ. ι ι : W~~Z

rl 1/

7) 2) 3a) 3b) 3c) 3d)

Pig. 4

1. The points y
x
 and y

2
 are in general position. Let ν be the left end of the

segment going through y
2
. Next we rub out the sections (x

a
, y^, (x

0
, ν), (υ, y

2
),

and introduce (y
1(
 y

2
) . As a result we get a contour J£

t
 with the beginning

*i > *o. for which x(Jf'
4
) - κ (X

2
) , if yi does not lie on the vertical segment;

otherwise x(i?
1
)= κ (j?

2
)
 o r
 *{Z\) ="•= « (̂ ?) — 2 depending on the direction of the

circuit.
2. The point y

2
 is not in general position. In this case y

1
 and y

2
 lie on a

segment belonging to the contour. Through y
2
 to the left we produce a horizontal

segment until it cuts the vertical segment through x
0
. Let ij be the point of

intersection. Now we rub out the segments (χ
0
, #ι), (χ

0
, yi), (y

x
, y

2
) . As a

result we get a new contour j ^ . It is obvious that κ (if
4
) = κ (if).

3. The point y
x
 is in general position, but y

2
 is not. It is obvious that y

2

is the lower end of a segment belonging to X. Let ζ be the upper end of this
segment. These cases are possible:

a) a horizontal segment, with end y
2
 directed to the left; a horizontal

segment with end ζ directed to the right. Let ν be the left end of that segment
on which y

2
 lies. Prom point ζ we produce one step to the left a segment whose

end we call w. We join the points υ and w and omit the segments (y
2
, z) and

(v, y
2
). As a result we get a contour X' in which ζ in general position plays

the part of y
2
. It is obvious that κ (X) --• κ (Χ

1
).

b) a horizontal segment, with end y
2
 directed to the right; a horizontal

segment with end ζ directed to the left. We call the left end of this segment w.
Prom y

2
 we produce to the left a segment of length 1 whose end we call v. It is

easy to check that the point ν belongs to X. We omit the segments
(y

2
, z), (z, w), (v, w). In X', the newly obtained contour y

2
 is a point in

general position and, depending on the direction of the circuit, x(X') — κ (Jf)
or' κ (Χ

1
) -- κ (Χ) — 2.

c) Both horizontal segments going through y
2
 and ζ directed to the right. As

before, let υ be the point nearest to y
2
 on the horizontal segment, and w the

point nearest to z. We suppose to begin with that the segment (a, v) contains no
points of the contour except w and v. In this case we join ν and w and omit the
segments (y

2
, z), (y

2
, v), (z, w). As a result we get a new contour X' in which,

depending on the direction of the circuit, κ (X
1
) -- κ (X) or κ (Χ

1
) —-• κ {Χ) — 2.

We call the construction so described the extrusion to the right of the broken
line
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If on the segment w, y there are points of the contour other than i t s ends,
they occur as pairs y | , z \ similar to y2, z. With each pair of points y\, zi

there is connected a pair of points wl, vl similar t o » , v. If on the segment
<"1. v l there are points of the contour other than ι»1, υ 1 , then these points occur
as pairs yJ'J, ζ^·ί similar to those described above, and with them, as before,
there are connected pairs w1·!, v1·). Continuing further we obtain a system of

broken lines υΛι ji\ ife *'', zh-· •••ii\ w'11'--"^'. We s h a l l c a l l s u c h a

broken line terminal if on the segment w11" • ·•lfl v11 l ' ' there are no points

of the contour other than ^ i · · · · • *)', v

{l'· • · · '". We extrude a l l terminal lines to the
right. Repeating this construction, if necessary, we eventually obtain a contour
whose segment w, ν does not contain any points other than w and v.

d) Both segments going through y2 and ζ are directed to the left. In this
case the contour J5" is constructed in the same way. (It is obvious that the
segment (w, v) does not contain points of the contour other than ν and w.)

In the cases 3c) and 3d) we denote by yo that point on X which is nearest
to and above yx on the straight line ! . If y2 is in general position, then we
reach the situation discussed with in the f irst variant. If y2 is not in general
position, then the situation arising is 3a), 3b), 3c) or 3d). In the cases 3a)
and 3b) we construct, as described in the relevant place, a contour J6" whose
corresponding point is in general position. In the remaining cases we continue
the construction as described in 3c) and 3d). Since this^cannot be an infinite
process, we eventually reach a contour χ with a point y 2in general position.

In this way a contour S£i can be constructed for a l l possible cases and
the Lemma is proved.
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